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Introduction
Biohydrogen production from fast pyrolysis of biomass is becoming increasingly attractive as a convenient path to produce clean hydrogen

at affordable costs. Bio-oil can be converted to hydrogen via reforming or gasification processes. Catalytic steam reforming is the best

alternative to produce high quality biohydrogen at lower reaction temperature. The combined fast pyrolysis/steam reforming process for

biohydrogen production is analysed from a variety of perspectives.

The main drawback of steam reforming of bio-oil is low

hydrogen yield and fast catalysts deactivation.

Causes of low hydrogen yield and fast catalysts deactivation

• Feedstock characteristics 

• Catalysts type

• Type of reactor and feeding process

• Operating parameters 
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Process layout: in-line or off-line combination of the pyrolytic and reforming stages
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Steam reforming of pyrolytic bio oil: the challenges

Proposed areas of focus

Off-line process layout:

• suitable for hybrid delocalized/centralized biomass exploitation schemes.

• flexible as to the choice of processing bio-oil as a whole, or selected fractions of it

resulting from simple fractionation stages.

Design and operation of the steam reformer: Fluidized bed as reference technology:

• excellent thermal performance;

• favourable multiphase contacting patterns.

Key issues to be addressed: 

• dispersion/mixing pattern of highly viscous & unstable bio-oil upon feeding to a fluidized bed; 

• reactor design and control of fluidization patterns to ensure effective contact between bio-oil 

vapours and the catalyst and overcome gas phase segregation and inefficient 

vapour/catalyst contact.

Catalyst formulation: Optimization of catalyst formulation with reference to the specific 

feedstock/ process layout to ensure:

• maximum hydrogen yield and productivity;

• maximum stability and minimal deactivation due to bio-oil contaminants that lead to loss of 

active sites of catalysts. 
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Process layout Benefits Drawbacks

Inline 
• avoids using condensation and volatilization

• cost effective

• possible operational problems at reforming stage

• difficult to control the stability of the intermediate product

Offline 

• flexibility with respect to operation parameters of 

either stage

• suited for hybrid delocalized/centralized biomass 

exploitation schemes

• uses condensation and volatilization steps that negatively 

impact the economics of the process 
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Preliminary process design

Reforming temperature (°C) 600 – 800 
S/C (–) 5 – 10
𝜏𝑐𝑎𝑡 (g h gvol

-1) 0.1 – 0.3 
Gas velocity (m/s) 0.4 – 0.8
Reactor diameter (m) ~ 0.08
H2 max production (%wt) ~ 10
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