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INTRODUCTION
Large quantities of agricultural wastes are generated every year around the world. Anaerobic co-digestion is a widely accepted process for utilization of agricultural residues due to

its advantages like low operational costs, applicability at any scale (scalability of the process), bioenergy production and circular economy .

Anaerobic Digestion Model 1, ADMI (Batstone et al, 2002) and its extensions are widely used for modeling co-digestion.

Current models used for co-digestion lacks consideration of fundamental physico-chemical process like ionic strength effects and influence of substrate characteristics such as
trace metal content and sulphur.

This study presents a model-based approach to understand anaerobic co-digestion of agricultural wastes. The model is an extended Anaerobic Digestion Model 1 (ADM1) to define
co-digestion where the biochemical and physiochemical framework are extended to include distinct disintegration factors based on substrate chracterisation, precipitation
processes, trace metal speciation processes and effects of ionic strength.

A local sensitivity analysis has been performed to filter most influential parameters amongst numerous parameters introduced in the new model framework.

Model simulations have been performed for co-digestion of an agricultural waste (maize straw) with cow manure to study effects of substrate characteristics such as organic

fractionation and trace metal content.
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METHODOLOGY

ADMI model is extended to include co-digestion and « For defining co-digestion, separate influent is defined for
each of the feedstock. Presence of trace metal and fractions

physico-chemical processes (Fig. 1). Ax] =7 - ' .
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Extensions made in  biochemical module are 4 adopted from literature (Tolessa et al, 2023, Ezebuiro et,

according to George et al. (2024). Modified physico- HoRowsIS 2017).

chemical framework consists of: : +  Alocal sensitivity analysis (LSA) based on one-factor-at-a-
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L influential parameters on model outputs. The first-order

1. kinetic precipitation model,
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\ Fig. 1. Schematic representation of ADMI based co-digestion model trace metal content.
/ RESULTS -
Sensitivity analysis ot ) Numerical simulations
oce
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